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1 Introduction

We present a new algorithm for unsupervised classification which we apply here to AVIRIS
hyperspectral data. The algorithm is based on the notion of region growing in a hierarchical
setting and involves both spectral clustering and spatial clustering. This is in contrast to the
standard approach to performing unsupervised classification of hyperspectral data wherein
pixels are clustered (segmented) into regions based only on the similarity of their spectra
without consideration of their spatial positions. Thus an important source of information
about segmentation, contiguity of spatial neighbors, is ignored. And notice that spectral
clustering will yield the same clusters for a data cube, and for the same data cube where the
spatial positions have been randomly permuted.

Hierarchical segmentation normally begins by assuming every pixel in the hyperspec-
tral data cube is a separate region (however, provision is made for initialization with a
per-segmentation). Then, a dissimilarity criterion is computed between spectra in neigh-
boring regions, the minimum dissimilarity criterion is found over all pairs of neighboring
regions, and all pairs of neighboring regions with this minimum dissimilarity criterion value
are merged. Optionally, this spatial clustering step is followed by a spectral clustering step
in which a dissimilarity criterion is computed between spectra of all spatially non-adjacent
regions, and all pairs of such regions with dissimilarity less than or equal to the minimum
dissimilarity value found in the spatial clustering step are merged. After sufficient iterations
of this procedure are completed so that a potentially meaningful segmentation is produced,
the segmentation process is checked for convergences. A convergence is signified by a jump
in a global dissimilarity criterion calculated between the region mean image and the origi-
nal image data values. When a convergence is detected, the image segmentation from the
previous iteration is saved. The region growing process (spatial clustering plus the optional
spectral clustering) is continued until there are only two regions remaining, and this two
region segmentation is also saved. The outcome is a hierarchical stack of segmentations at
different levels of segmentation detail in the form of a tree structure with two regions at the
top which come from merges of multiple regions at the next level down, and so on, to the
highest level of segmentation detail from the first detected convergence.

Clearly this process is compute intensive. However the advent of cluster computing by



Beowulf class machines [1], in which tens of commodity Intel processors running Linux are
interconnected with a high speed network, allows methods requiring large computational
resources to be explored. For example on a 64 processor Beowulf machine with a Myrinet
network linking the processors, it is possible to perform hierarchical segmentation on a data
cube of size [lines, samples, bands] = [ 464, 595, 182 | in 16 minutes, and on a data cube of
size [ lines, samples, bands] = [ 128, 128, 182 | in 129 sec.

Below we describe the hierarchical segmentations algorithm and demonstrate its use on
a hyperspectral data cube taken by AVIRIS at the Patuxent Wildlife Research Center in
Laurel Maryland.

2 Hierarchical Segmentation

Image segmentation is a partitioning of an image into sections or regions. These regions may
be later associated with a ground cover type or land use type, but the segmentation process
simply gives generic labels (region 1, region 2, etc.) to each region. The regions consist of
groupings of hyperspectral image pixels that have similar data feature values. These data
feature values may be the hyperspectral data values themselves, and/or they may be derived
features such as band ratios [2] or textural features [3]. Image segmentation is a key first
step in a number of approaches to image analysis. In image analysis, the group of pixels
contained in each region provides a good statistical sampling of data values for more reliable
labeling based on multi-spectral or hyperspectral feature values. In addition, the region
shape can be analyzed as an additional clue for the appropriate labeling of the region. Most
image segmentation approaches can be placed in one of three classes [4]: 1. Characteristic
feature thresholding or clustering, 2. Boundary detection, 3. Region growing.

Characteristic feature thresholding or clustering is often ineffective because it does not exploit
spatial information. Boundary detection does exploit spatial information through examining
local edges found throughout the image. For simple noise-free images, detection of edges
results in straightforward boundary delineation. However, edge detection on noisy, complex
images often produces missing edges and extra edges producing region boundaries that do
not necessarily form a set of closed connected curves that surround connected regions. We
prefer region growing because it exploits spatial information and guarantees the formation of
closed connected regions. However, region growing is not without its problems. With region
growing, spectrally similar but spatially disjoint regions are never associated together, and
it is often not clear at what point the region growing process should be terminated. Also,
region growing tends to be a computationally intensive process.

Tilton has developed a hybrid region growing and spectral clustering approach (first
described in [5]) that largely overcomes these problems. The hybridization with spectral
clustering allows association of spectrally similar but spatially disjoint regions. The approach
also includes the detection of natural convergence points to assist in determining at what
point the region growing process should terminate. Finally, the recursive version of this



approach is very effectively implemented on MIMD (Multiple Instruction, Multiple Data
stream) parallel computers, which greatly reduces the amount of time required to segment
large images with this approach. Next we give a description of the segmentation approach.
The actual implementation is on Beowulf class cluster machine at Code 935, NASA/GSFC

[6]-

2.1 Hybrid of Region Growing and Spectral Clustering

We begin by defining the global criterion that will control how the algorithm will decide when
to merge regions of similar clusters, and how the algorithm will decide that the particular
level reached in the merging process is a natural convergence point and should be saved.
Then we describe a high-level outline of the hybrid image segmentation (HSEG) approach.

2.1.1 Dissimilarity Criterion

Selection of an appropriate dissimilarity criterion is generally dependent on the application
the resulting segmentations will be used for, and on the characteristics of the image data.
However in earlier studies, Tilton [7] found the Euclidean Spectral Distance to be a useful
criterion.

Let two regions (which may be individual pixels or regions of contiguous or non-contiguous
pixels that are spectrally similar), be labeled by w,1. For these regions we can compute
mean spectral vectors X, = (Zy1,Tw2, - - - s Twn,) a0d Xy = (Ty1, Ty2, - - -, Tyn, ), Where Tyq =
Yicw, Tiq/ Xicw, 1 and similarly for Ty, and where ¢ (1 < g < n) is the index of the spectral
band and nj, is the total number of bands per pixel.

From these a Euclidean spectral distance defines the dissimilarity criterion,
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2.1.2 Global Criterion

The global criterion is used to identify significant changes in the segmentation results from
one iteration to the next. This criterion is defined like the dissimilarity criterion, except
that it compares the original image data with the region mean image from the current
segmentation. The value of this criterion is calculated at each image point, and averaged
over the entire image. Thus we define the global criterion as,
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where 7 indexes an image pixel, w indexes over regions of spectrally similar pixels given by
the current segmentation {c, 3, ...}, ¢ indexes over the all the spectral channels 1...n; for
each pixel or region, and ny and n; are the number of samples (columns) and lines (rows) in
the image.

Next we give in pseudo code the Hierarchical Segmentation Algorithm. This is the basic
algorithm, but in order to render it computationally on any but small hyperspectral cubes it
will need to be embedded in a recursive hierarchical segmentation algorithm which is given
in the sequel. We will show two ways it can be used depending on the value of the parameter
Nenr:

N = (0 suppresses convergence checking
chk { > (0 wuses convergence checking



2.1.3 The Hierarchical Segmentation Algorithm

seg = HSEG ( cube, Nyin, Nehky Bihresh, 59)

% cube hyperspectral cube of size r, s, ny
% Nmin number of regions threshold. When called by recur_hseg with n,.. > 0, set > 2, else 2
% Nenk number of regions threshold when level 0 has converged.
% Othresh,  threshold for natural global convegence test
% seg'™* initial hyperspectral cube segmentation
%Define: k the heirarchical level index
% N(K) number of regions in level &
% Tloop control output
k=0, NO =¢ x s, seg = seg™t, /L;I;Z;) =0, Tip0p =tTUE % initialization
while( N*®) > N,.;, ) % outer loop with end criterion
while( Tjo0p == true & Nepk > Npin) % inner loop with natural convergence criterion
compute f,; between all pairs of % region growing
spatially adjacent regions, w,
find smallest uggj’") over all spatially % region growing

adjacent regions

seg «merge(seg, all pairs of spatially adjacent regions
(min)

e and v where fie, = pro4 ) % region growing
N« new number of regions
compute p,, where o and 7 index over % spectral clustering

all pairs of non-spatially adjacent regions.
seg «<merge( seg, all pairs of non-spatially adjacent
regions A and £ where pye < pg’zm) ) % spectral clustering
N« new number of regions

if (N *) < Npk ) % natural convergence test begins at Nepg
compute ué%‘lrr)
if ( pé%le) >0) ¢ = ug;‘l”) / ug’ZZf) % compute ¢ only when defined
else ¢ = Gihresh
(pre) (cu:(:i

Koy~ = Hgrpr
if( ¢ 2 ¢th7‘esh ) Tloop + false
end if
end while
if ( 7100p ==false )
save region label map from the iteration &
as the segmentation result for level k.
Tloop <true
k+—k+1
endif
end while
if( Nepr >0 )
save region label map from the current iteration as the
coarsest instance of the final hierarchical segmentation result.
stop
end if
end



2.1.4 Implementation Overview

A practical implementation of the hierarchical segmentation algorithm for all but the smallest
hyperspectral cubes requires that the combinatorial growth in inter-region comparisons in
the spectral clustering steps be addressed. Tilton’s solution, is to recursively subdivide
the image data into smaller and smaller sections until an image size is reached in which
the required number of inter-region comparisons is sufficiently constrained that the HSEG
algorithm can be applied without the global criterion, and run until a pre chosen number
of regions, N,,;, has been found. At this point the segmentation so found is passed to the
HSEG algorithm with the global criterion, which then produces the stack of region labeled
segmentations. The number in the stack is dependent on the global criterion ¢sp,sp and the
number of regions that initializes the HSEG computation [8]. Additional processing speed
can be obtained through a parallel implementation of the recursive hierarchical segmentation
algorithm [9]. However, the recursive decomposition and subsequent recombination of results
can easily impart processing window artifacts in the segmentation results so obtained unless
steps are taken to remove the artifacts. Effective and efficient methods for removing these
artifacts have been devised [10]. This is called the RHSEG algorithm and is given in the
sequel.

2.1.5 Implementation Details

For recursion, the original hyperspectral cube is subdivided along the spatial coordinates into
4 equal sized cubes rectangular in the spatial coordinates, each of which is itself subdivided
into 4 equal rectangles and so on n,.. times until each of the 4"¢ cubes resulting are small
enough to directly apply HSEG to. Typically we choose n,.. such that the number of pixels
in the smallest cube, n;/2"< x ng/2"<_ isin the range 500...2000. In order for the number
of pixels in the two spatial directions be integers at level n,... we pad out the original cube to
n®*9 and n®*d with spectra of all 0’s so that n{P*? /2mre and n{ad) /2nree are both integers.
The recursive algorithm, called RHSEG, first establishes the number of recursions and then
calls recursively calls recur_hseg until the resulting subdivided hyperspectral cubes can be
processed, without the global criterion, by HSEG. The resulting subdivided segmentation
are then reassembled in recur_hseg until a segmentation at the top level of the recursion is
obtained. This then initializes a final call of HSEG with the global criterion, and produces
the output stack of region labeled segmentations.



seg(ni,ns) = RHSEG (cube(ny,ng,m), Niin, Nehk, Pehresh, 5€97%)

% (cube(n, ng,mnp) initial data cube

% Nmin number of regions threshold.

% Nepg number of regions threshold when level 0 has converged.
% Dshresh threshold for natural global convegence test

% seginit optional initial hyperspectral cube segmentation

% Define: Nyec number of recursive calls

% lrec recursion level

% nl(p ad) = p(pad) padded sizes

compute 7, as an integer such that log, [nin,;/2000] < nye. < 3 log, [rmn,/500]
(pad) — 2nrec 2nrec

= [r/27ree]

ngpad) = Qnrec [, [2nree]

cube(nl(’md), n(fad),nb) = pad( cube(n;,ns,ny) ) % pad out with 0 spectra
lrec =0
seg = recur_hseg( cube(n\"*? n{*? 1ny), Nynin, Nenks Ginreshs Tirecs Lrees s€g™it )
end
seg = recur_hseg( CUbe(ra S, nb): Nmin; Nchk; ¢th7‘esh; Nrec, lrec; segz’nz’t )
% cube(r,s,np) sub-cube of size 7 X s X
%  Nmin minimum number of regions for stopping criterionn
% Necpk number of regions threshold when level 0 has converged.
% Pihresh threshold for natural global convegence test
% Nrec number of recursive calls desired
% lrec recursion level
% seginit optional initial hyperspectral cube segmentation
%Define 1 index € 1,2, 3,4 naming i’th sub-cube in recursion
if( lpec < Npec true )
for i=1,4 do

cube;(r/2,s/2,np) = splitd(i, cube(r, s,nyp) )
seg::nz't (7‘/2, 8/27 nb) = Split4(’L, Seginit('r, S, nb) )
segi(r/2,s/2,ny) = recur_hseg( cube;(r/2,5/2,n), Nmin, Nenk, Pthresh

Nrecy lrec + 1, 569 (r/2,5/2,np ) % Incremented lye.
end do
segi™(r, s,np) = concatenate( segi,segs, segs, segs )
end if
if( lree == 0 & Newk > Noin ) Npin = Nehi
segte™ = HSEG ( cube, Npmin, 0, dihresh, s5€g™) % Note, set Nepp =0

segi™t = eliminate_artifacts( seg'®™P )
(Lo == 0)

seg = HSEG( cube, Npin, Nehks Behresh, 5€g°7)
end if
return

end

As described above, the RHSEG algorithm is prone to producing processing window
artifacts in its segmentation results. These processing window artifacts are eliminated by
examining the segmentation results after the completion of the call to HSEG in recur_hseg,
and changing the region membership of pixels that are more similar to a region other than



the region the pixels are currently assigned to. How this process is efficiently implemented
is described in [10].

2.1.6 Parameter Settings and Program Refinements

As described in sections 2.1.3 and 2.1.4 above, the HSEG and RHSEG algorithms with
the Euclidean spectral distance dissimilarity criterion tend to produce segmentations with
a large number of small regions. Since these small regions are generally of little use in the
ultimate analysis of the segmentation results, an option has been added to the HSEG and
RHSEG algorithms to encourage these small regions to merge into other regions. When
this option is selected, the dissimilarity function is multiplied by the factor

P, — Ps
1 |2m ~°
ol

where P, is a user supplied parameter, and P; is the number of pixels in the smaller of the
two regions being compared. This bias factor is applied only when P; < P,,. In this paper
we have used P, = 16, Ny = 256, Nepp = 64, and ¢ = 1.01.

3 Results for Patuxent Wildlife Research Center

On August 1, 2001 a series of AVIRIS scenes along a single flight line which included the
Patuxent Wildlife Research Center (PWRC) in Laurel, Maryland was acquired. PWRC
is a research facility of the U.S Fish and Wildlife Services and is roughly 50 square km
and comprises mostly forest with some meadows, lakes, ponds, wetlands, and the Patuxent
River. The data was radio-metrically corrected and geo-registered with a pixel size of 12.1 m.
Scene 3 of flight-line, f010801t01p03_r08, was corrected for cross track illumination variation,
due to the flight-line being flown at +60 deg from true north, and the bands were subset
from 224 to 182 by removing bands with negative values due to water absorption and noise.
To demonstrate the algorithm, a square subset of size 128 x 128 was subset out [11]. A
preliminary use of recursive hierarchical segmentation RHSEG was performed to create
masks for the clouds and cloud shadows in the scene. In this case 17 levels were found as
shown in Fig. 1.



Fig. 1: The 17 levels of the hierarchical segmentation with an arbitrary
color map that is the same for each level. Level 1 is the top left and
follows left to right and then down. Note that there are 64 different
colors in level 1, but they cannot all be resolved. At level 17 there are

only 3.

This involves the use of the region labeling tool developed by Tilton [12]. The tool
provides a Gui, typically with two windows, one showing a reference image such as an
approximate true color image, and a second window in which the user can move up and
down the segmentation hierarchy. The mouse is used as a pointing tool to track and show



the same spatial location in both windows, and the mouse buttons allow the user to select a
single region at any level in the hierarchy window and then track that region up and down,
as it either remains the same or coalesces with other regions going up or remains the same
or splits into sub-regions going down the hierarchy.

Thus a feature in the reference image is used to select regions in the hierarchy. If, in
tracking that region of the hierarchy, it is found to be stable over several levels, then it is
taken to mean it is a region in the final segmentation. The user then can select a color from
a palette, and a label for the region. For example in Fig. 1 at level 16 the yellow, brown, and
tan regions match the clouds and cloud shadows, and these regions persist, though resolving
to additional colors with the same external boundary down to level 10, The region labeling
tools allows the selection of those three regions at level 17 to then be tracked down to lower
levels to see how those regions break up into sub regions. To the extent that they maintain
the same shape over several levels is an indication of their describing a real region feature
in the scene. The analyst can also use the region labeling tool to select regions of interest
by enclosing them with drawn closed loops in order to add pixels to a region in an existing
segmentation.

In this way a cloud/cloud shadow mask was derived. Then the mask was applied to the
original hyperspectral cube and RHSEG was applied to the masked hyperspectral cube.
That resulted in the segmentation shown in Fig. 2, for which 18 levels occurred.



Fig. 2: The 18 levels of the hierarchical segmentation with a cloud
mask, in grey, where the arbitrary color map as used in Fig. 1 has
been changed so that the colors agree with color choices used in the
right part of Fig. 3. This was done after the user manually selected the
colors for the classification in the right part of Fig. 3 using the region
labeling tool. Then the default color map was modified to substitute
these colors for the original colors in this segmentation to make it easier
to see the relationship of this segmentation to the result in the right of
Fig. 3.




A second application of the region labeling tool to the segmentation in Fig. 2 was then
used to obtain the result shown in the right of Fig. 3. The approximate true color image is
shown in the left of Fig. 3. Note that segmentation result in the right of Fig. 3. is close, but
not identical to level 15 in Fig. 2. For example the road features (in yellow) are continuous
in our final segmentation, are broken in level 15, but are seen to be continuous in levels 11
down to 6 in Fig. 2.

Fig. 3: On the left the approximate true color image, and on the
right a classification based on cloud/cloud shadow masking followed
by hierarchical segmentation and subsequent use of the region labeling
tool. Here gray represents the cloud/cloud shadow mask. Note it is
similar, but not identical to level 15 in Fig. 2

4 Conclusion

The hierarchical segmentation algorithm has been described together with its implementa-
tion on a Beowulf computer using a recursive approach. The algorithm performs both spatial
region growing and spectral clustering, thereby using both spectral and spatial information
in the hyperspectral cube. It yields a new representation of hyperspectral imagery as a hier-
archy of images that show how regions coalesce as one ascends the hierarchy. By examining
the stability of regions across levels in the hierarchy, a segmentation can be found that can
form the basis for unsupervised classification. To help in this examination across levels, the
region labeling tool is introduced to assist an analyst in extracting these stable features. We
have demonstrated the algorithm and the region labeling tool on a small AVIRIS hyperspec-
tral cube, and obtained a reasonable segmentation into recognizable features. While this is
a preliminary result, and it does involve the analyst interpreting the scene, the hierarchical
segmentation together with the region labeling tool provides a new method to analyze hy-
perspectral data. In the future we plan to further automate this process by taking advantage



of the rich representation of the data that the hierarchical segmentation provides.
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